Performance Testing of a Solar Thermal Fruit Dryer

A Case Study to Reduce Food Waste in Mozambique

Hello!

We are <mark>Ricardo Bernardo</mark> & Pia Otte

The Swedish Research Council Formas

Committed to excellence in research for sustainable development

Background & Purpose

25-40% Post harvest losses

Twice the irradiance compared to Lund

Solar Potential

Principles & Objective

Pervaporation:

- Driven by diffusion
- Relative Humidity
- Temperature increase:
 - Effectively lower RH
 - Increase Pervaporation

Pervaporation:

- Driven by diffusion
- Relative Humidity
- Temperature increase:
 - Effectively lower RH
 - Increase Pervaporation
- Air Flow counteract Saturation

Design criteria for solar dryer prototypes

Ń

<u>Results</u> in Lund – active dryer

Ŕ

Ratio of dry rates (-)

Type of bag	Both sides open	One side open	Both sides closed	No fans active
In dryer (ratio to control)				
Control				

Solar dryers tested in Mozambique

<u>Results</u> in Mozambique – both dryers

Ratio of dry rates (-)

Ś

Day number	I	Day 1	Da	ay 2	D	ay 3
Type of dryer	Sugar	No sugar	Sugar	No sugar	Sugar	No sugar
Active (ratio to control)						
Passive (ratio to control)						
Control						

Temperature

Both dryers reached temperature above 50°C

Performance

Close to 2 times faster than control bag (lab and field), Three days for fully dried.

Which dryer is best?

Active is faster, Passive is cheaper. Season dependent performance.

Food safety

Need for pasteurisation. Not possible in dryers yet,

Evaluation of drying

Drying speed not good indicator to compare drying.

Future Work

- Drying as a function of cumulative weight loss for specific recipe?
- Plastic sheet not practical
- Passive dryer has too little space for bags
- Increase drying speed.

Thank you for your time!

 \bigcirc

Viel Mi